
Reference Guide

McAfee ePolicy Orchestrator 5.1.0
Software
Web API Scripting

COPYRIGHT
Copyright © 2013 McAfee, Inc. Do not copy without permission.

TRADEMARK ATTRIBUTIONS
McAfee, the McAfee logo, McAfee Active Protection, McAfee CleanBoot, McAfee DeepSAFE, ePolicy Orchestrator, McAfee ePO, McAfee EMM, Foundscore,
Foundstone, Policy Lab, McAfee QuickClean, Safe Eyes, McAfee SECURE, SecureOS, McAfee Shredder, SiteAdvisor, McAfee Stinger, McAfee Total
Protection, TrustedSource, VirusScan, WaveSecure are trademarks or registered trademarks of McAfee, Inc. or its subsidiaries in the United States and
other countries. Other names and brands may be claimed as the property of others.

Product and feature names and descriptions are subject to change without notice. Please visit mcafee.com for the most current products and features.

LICENSE INFORMATION

License Agreement
NOTICE TO ALL USERS: CAREFULLY READ THE APPROPRIATE LEGAL AGREEMENT CORRESPONDING TO THE LICENSE YOU PURCHASED, WHICH SETS
FORTH THE GENERAL TERMS AND CONDITIONS FOR THE USE OF THE LICENSED SOFTWARE. IF YOU DO NOT KNOW WHICH TYPE OF LICENSE YOU
HAVE ACQUIRED, PLEASE CONSULT THE SALES AND OTHER RELATED LICENSE GRANT OR PURCHASE ORDER DOCUMENTS THAT ACCOMPANY YOUR
SOFTWARE PACKAGING OR THAT YOU HAVE RECEIVED SEPARATELY AS PART OF THE PURCHASE (AS A BOOKLET, A FILE ON THE PRODUCT CD, OR A
FILE AVAILABLE ON THE WEBSITE FROM WHICH YOU DOWNLOADED THE SOFTWARE PACKAGE). IF YOU DO NOT AGREE TO ALL OF THE TERMS SET
FORTH IN THE AGREEMENT, DO NOT INSTALL THE SOFTWARE. IF APPLICABLE, YOU MAY RETURN THE PRODUCT TO MCAFEE OR THE PLACE OF
PURCHASE FOR A FULL REFUND.

2 McAfee ePolicy Orchestrator 5.1.0 Software Reference Guide
Web API Scripting

http://mcafee.com

Contents

Preface 5
About this guide . 5

Audience . 5
Conventions . 5

Find product documentation . 6

1 Overview 7
Web API basics . 7
Discover available commands through URLs . 9
Example task using the web API . 10
Python client basics . 12
Web API Python script requirements . 13

Import the McAfee Python client library . 13
Script McAfee ePO server authentication . 13

Discover available commands in Python . 14
Additional documentation included with the web API 15
Key commands . 16

2 Example Python scripts 21
Example 1: Tag systems from a list . 21
Example 2: Automate repetitive tasks on managed systems 22
Example 3: Automate user management . 23
Example 4: Import computers from external sources 24
Example 5: Import and export data . 25
Example 6: Automate maintenance of the System Tree 25

3 Remote queries 27
Persistent queries . 27
Ad-hoc queries . 28

Create an ad-hoc query from a query definition 30
Get information about registered databases and tables 31

Queries with joins . 32
Retrieve hierarchical query results . 33
Limit query result depth . 33

Remote query commands . 34
Ad-hoc query reference . 34

General query datatypes . 35
General S-Expression operations . 35
S-Expression operator and datatype combinations 37
Special ePolicy Orchestrator datatypes . 38
Special ePolicy Orchestrator operators . 38
Special ePolicy Orchestrator operator and datatype combinations 39

Index 41

McAfee ePolicy Orchestrator 5.1.0 Software Reference Guide
Web API Scripting

3

Contents

4 McAfee ePolicy Orchestrator 5.1.0 Software Reference Guide
Web API Scripting

Preface

Contents
 About this guide
 Find product documentation

About this guide
This information describes the guide's target audience, the typographical conventions and icons used
in this guide, and how the guide is organized.

Audience
McAfee documentation is carefully researched and written for the target audience.

The information in this guide is intended primarily for:

• Administrators — People who implement and enforce the company's security program.

• Security officers — People who determine sensitive and confidential data, and define the
corporate policy that protects the company's intellectual property.

Conventions
This guide uses these typographical conventions and icons.

Book title, term,
emphasis

Title of a book, chapter, or topic; a new term; emphasis.

Bold Text that is strongly emphasized.

User input, code,
message

Commands and other text that the user types; a code sample; a displayed
message.

Interface text Words from the product interface like options, menus, buttons, and dialog
boxes.

Hypertext blue A link to a topic or to an external website.

Note: Additional information, like an alternate method of accessing an
option.

Tip: Suggestions and recommendations.

Important/Caution: Valuable advice to protect your computer system,
software installation, network, business, or data.

Warning: Critical advice to prevent bodily harm when using a hardware
product.

McAfee ePolicy Orchestrator 5.1.0 Software Reference Guide
Web API Scripting

5

Find product documentation
McAfee provides the information you need during each phase of product implementation, from
installation to daily use and troubleshooting. After a product is released, information about the product
is entered into the McAfee online KnowledgeBase.

Task
1 Go to the McAfee Technical Support ServicePortal at http://mysupport.mcafee.com.

2 Under Self Service, access the type of information you need:

To access... Do this...

User documentation 1 Click Product Documentation.

2 Select a product, then select a version.

3 Select a product document.

KnowledgeBase • Click Search the KnowledgeBase for answers to your product questions.

• Click Browse the KnowledgeBase for articles listed by product and version.

Preface
Find product documentation

6 McAfee ePolicy Orchestrator 5.1.0 Software Reference Guide
Web API Scripting

http://mysupport.mcafee.com

1 Overview

McAfee® ePolicy Orchestrator® provides a web application programming interface (API) that allows you
to script and automate common management activities. For example, you can automate user and
System Tree maintenance and data import and export.

This guide explains what the ePolicy Orchestrator web API is, how to use it, and walks you through a
few examples using a Python client. It also includes a detailed look at some key commands and an
extensive description of the query system.

Contents
 Web API basics
 Discover available commands through URLs
 Example task using the web API
 Python client basics
 Web API Python script requirements
 Discover available commands in Python
 Additional documentation included with the web API
 Key commands

Web API basics
You can use the ePolicy Orchestrator web API commands, with the command-line, to automate ePolicy
Orchestrator configuration using scripts instead of using the user interface.

This section uses examples of the cURL command line tool for transferring data with URL syntax. Each
command is designed to work without user interaction. The cURL executable is free and open software
that runs under a wide variety of operating systems.

Each cURL example includes standard parameters followed by the actual ePolicy Orchestrator web API
URL that executes a command on your McAfee ePO server. These parameters should help you to
understand what the command does, although in practice you should implement tighter security when
it comes to trusting the site's certificate.

The ePolicy Orchestrator web API supports using other command-line tools, for example wget (part of
the GNU Project, © 2009, Free Software Foundation, Inc.), to retrieve data from your McAfee ePO
server.

This command, for example, shows the cURL syntax and the URL to illustrate the core capabilities of
the web API.

> curl -k -u ga:ga https://localhost:8443/remote/core.help

This table shows the parameters used with the curl command example.

1

McAfee ePolicy Orchestrator 5.1.0 Software Reference Guide
Web API Scripting

7

Parameter Description

‑k Allows cURL to perform "insecure" SSL connections and transfers.

‑u Specifies the user name and password to use for server authentication. If you enter
just the user name (without a colon) cURL prompts you for a password.

ga User name, "ga", global administrator used in this document's examples.

You can use special characters in your user names, but make sure you follow your shell's
quoting and escaping rules.

ga Password, "ga", used in this document's examples.

You can use special characters in your passwords, but make sure you follow your shell's
quoting and escaping rules.

localhost : ePolicy Orchestrator server, identified as "localhost", in this document's examples.

8443 Destination port, identified as "8443" (the default), in this document's examples.

In the examples in this document, the McAfee ePO server and destination port are identified as
"localhost" and "8443" (the default). You need to replace these entries with the server name and port
number of your own installation.

Web API commands follow all role-based permissions as enforced through the McAfee ePO server
graphical interface.

The web API is used primarily for two purposes:

• Performing simple tasks without using the user interface

• Scripting sequences of tasks

Scripts using the web API can be run from any computer that can connect to the McAfee ePO server.
For security reasons, these commands should not be run on the same computer as the McAfee ePO
server itself.

General syntax
The general syntax for a command sent via HTTPS is:

https://<server>:<port>/remote/<command>?<arg1>=<val1>&<arg2>=<val2>

Additional arguments can be specified as needed.
Some commands require input in other formats, such as importing a file. For example, importing an
XML file containing permission sets looks like this:

> curl -k -u ga:ga "https://localhost:8443/remote/core.importPermissionSets" -F
file=@permissionSets.xml

Output options
By default, commands return output in a human-readable format. When scripting, however, you
usually want commands to return data in a more machine-readable format. This format is controlled
with the :output parameter.

https://localhost:8443/remote/core.help?:output=json

This example returns data in JavaScript Object Notation (JSON) format. Other options include verbose
(default), terse, and xml. These arguments must be supplied as all lowercase text. In addition, the
parameters shown in this table are available.

1 Overview
Web API basics

8 McAfee ePolicy Orchestrator 5.1.0 Software Reference Guide
Web API Scripting

Table 1-1 Output format parameters

Parameter Description Values

:output Specifies the output format. verbose (default) terse, xml, json
:locale Specifies the output locale. Defaults to server's locale. Example

values include en, de, cn‑zh.

:validation Specifies the validation level on the command.
Strict validation throws errors when an argument
is missing, loose validation ignores missing
arguments.

strict (default), loose

Discover available commands through URLs
Newly installed ePolicy Orchestrator extensions provide more web API commands. Learn which
commands are available to you.

Use the core.help command to learn which commands you can access and the details of specific
commands. When used without any arguments, core.help provides a list of available commands.

> curl -k -u ga:ga https://localhost:8443/remote/core.help

The exact list of commands displayed depends on your permissions and the extensions installed.

This command returns a list that looks similar to this example.

OK:
ComputerMgmt.createCustomInstallPackageCmd windowsPackage deployPath [ahId] [fallBackAhId]
[useCred] [domain] [username] [password] [rememberDomainCredentials] -
ComputerMgmt.create.Custom.Install.Package.Cmd.short-desc
agentmgmt.listAgentHandlers - List all Agent Handlers
clienttask.export [productId] [fileName] - Exports client tasks
clienttask.find [searchText] - Finds client tasks
clienttask.importClientTask importFileName - Imports client tasks from an XML file.
clienttask.run names productId taskId [retryAttempts] [retryIntervalInSeconds]
[abortAfterMinutes] [useAllAgentHandlers] [stopAfterMinutes] [randomizationInterval] - Runs
the client task on a supplied list of systems
clienttask.syncShared - Shares client tasks with participating registered servers
commonevent.purgeEvents queryId [unit] [purgeType] - Deletes threat events based on age or a
queryId. The query must be table based.
commonevent.purgeProductEvents queryId [unit] [purgeType] - Purge Client Events by Query ID
or age.
console.cert.updatecrl console.updateCRL crlFile - cert.update.crl.help.oneline
core.addPermSetsForUser userName permSetName - Adds permission set(s) to specified user
core.addUser userName password [fullName=<>] [email=<>] [phoneNumber=<>] [notes=<>]
[disabled=<>] [admin=<>] - Adds a user to the system
core.executeQuery queryId [database=<>] - Executes a SQUID query and returns the results
.
[information deleted]
.
system.report names - Reports the systems in the System Tree
system.runTagCriteria tagID [resetTaggedSystems] - The Run Tag Criteria action evaluates
every managed system against the tag's criteria. system.setUserProperties names
[description] [customField1] [customField2] [customField3] [customField4] - Sets user
properties on the given system
system.transfer names epoServer - Transfers systems to a different ePO server
system.wakeupAgent names [fullProps] [superAgent] [randomMinutes] [forceFullPolicyUpdate]
[useAllHandlers] [retryIntervalSeconds] [attempts] [abortAfterMinutes] [includeSubgroups] -
Wakes up the agent on a supplied list of systems
tasklog.listMessages taskLogId - Lists the messages for the specified task log entry
tasklog.listSubtasks taskLogId - Lists subtasks of a specified task log entry
tasklog.listTaskHistory [taskName] [taskSource] [maxRows] [age] [unit] - Lists

Overview
Discover available commands through URLs 1

McAfee ePolicy Orchestrator 5.1.0 Software Reference Guide
Web API Scripting

9

task log entries, optionally filtered by task name, task ID or task source
tasklog.listTaskSources - Lists the task sources
tasklog.purge [age] [unit] - Purges the Server Task Log beyond a given age and time unit

The Help output displays the:

• Prefix, for example "core".

• Command name, for example "help".

• Required arguments and optional arguments. Optional arguments are enclosed in square brackets
("[" and "]").

Arguments followed by =<> require the specific argument name and a value. For example, if the
command help shows [email=<>] you must provide the argument name and the value, as in
email=joe_test@mcafee.com.

• Brief description of the command.

This extended command example is used to request more detailed information about a specific
command.

> curl -k -u ga:ga https://localhost:8443/remote/core.help?command=core.listQueries

This command displays:

OK:
core.listQueries
Displays all queries that the user is permitted to see. Returns the list of
queries or throws on error.
Requires permission to use queries.

Example task using the web API
You can accomplish many simple tasks using the ePolicy Orchestrator web API. This complete example
demonstrates the suggested steps to complete a task.

This example allows you to use the web API to assign a policy to a group.

Task
1 Use this Help request to find out what the policy.assignToGroup command requires.

> curl -k -u ga:ga https://localhost:8443/remote/core.help?command=policy.assignToGroup

This command displays:

OK:
policy.assignToGroup groupId productId objectId [resetInheritance]
Assigns policy to the specified group or resets group's inheritance for the specified
policy
Requires permission to at least one group in the System Tree and edit permission for at
least one product
Parameters:
 groupId (param 1) - Group ID as returned by system.findGroups
 productId (param 2) - Product ID as returned by policy.find
 objectId (param 3) - Object ID as returned by policy.find
 resetInheritance (param 4) - If true resets the inheritance for the specified policy on
the given group. Defaults to false.

1 Overview
Example task using the web API

10 McAfee ePolicy Orchestrator 5.1.0 Software Reference Guide
Web API Scripting

This Help request shows that there are three required arguments:

• Group ID

• ID for the product you want to assign

• Object ID of the policy to assign.

You could also reset the inheritance, but that argument is not required, and is not used it in this
example.

2 Use the system.findGroups command to find the group ID.

> curl -k -u ga:ga https://localhost:8443/remote/system.findGroups?searchText=My Group

That command returns a result similar to this:

OK:
groupId: 2
groupPath: My Organization

groupId: 4
groupPath: My Organization\My Group

3 Use this policy.find command to find the product ID and policy object ID:

> curl -k -u ga:ga https://localhost:8443/remote/policy.find?searchText=quarantine

That command returns two results:

OK:
featureId: VIRUSCAN8800
featureName: VirusScan Enterprise
objectId: 131
objectName: McAfee Default
objectNotes:
productId: VIRUSCAN8800
productName: VirusScan Enterprise 8.8.0
typeId: 67
typeName: Quarantine Manager Policies

featureId: VIRUSCAN8800
featureName: VirusScan Enterprise
objectId: 142
objectName: My Default
objectNotes:
productId: VIRUSCAN8800
productName: VirusScan Enterprise 8.8.0
typeId: 67
typeName: Quarantine Manager Policies

4 Choose one of policy.find results. This example uses the My Default policy and you have all the
information you need to assign a policy to a group with this information:

• Group ID — 4

• Product ID — VIRUSCAN8800

• Policy object ID — 142

Overview
Example task using the web API 1

McAfee ePolicy Orchestrator 5.1.0 Software Reference Guide
Web API Scripting

11

5 Use the previous information and this policy.assignToGroup command to assign a policy to a
group:

> curl -k -u ga:ga https://localhost:8443/remote/policy.assignToGroup?
groupId=4&productId=VIRUSCAN8800&objectId=142

This returns:

OK:
True

The policy is assigned.

In general, the web API commands return three kinds of results:

1 True or False results indicating the command's success or failure

2 Data returned from the command

3 Multiple data items and which items succeeded or failed

Python client basics
McAfee provides a software download that includes Python version 2.7 and the Python Remote Client
software, also known as pyclient. The supplied Python Remote Client software simplifies
communication with, and exploration of, your ePolicy Orchestrator web API.

Using ePolicy Orchestrator web API commands with a scripting language, like Python, provides
flexibility. The scripting language allows you to use the output of one command as the input to
another, or to use conditions to perform actions based on script input or command output.

If you connect to ePolicy Orchestrator 5.x using the ePolicy Orchestrator 4.6.x Python client you might
experience intermittent connection errors. ePolicy Orchestrator 5.x users should download the ePolicy
Orchestrator 5.x Python client available from the Software Manager.

Python client software requirements
The Python client requires Python version 2.6 or 2.7. The source code is included in a file named
mcafee.py. For your Python client scripts to function properly, this mcafee.py file must be placed in
the same folder as your scripts, or in the Python module search path.

Using the client
The Python client converts data returned from all commands into Python objects for easy processing.
The Python client can be used in two ways: imported into a .py script run at the command line, or in
Python interactive mode. In either case, follow the script requirements. See Web API Python script
requirements for details.

The source code to the client, which is included, can be used for educational purposes, porting to
other languages, or expanding the Python client's capabilities.

Notes on parameters
Some commands, such as system.clearTag, can take a comma-delimited list of values as a
parameter. If you want to embed spaces in this list, enclose the entire list in quotes.

mc.system.clearTag("System1, System2, System3","oldTag")

Any parameter requiring a file name uses the file:///c:/path/to/file format used in URLs.

1 Overview
Python client basics

12 McAfee ePolicy Orchestrator 5.1.0 Software Reference Guide
Web API Scripting

See also
Web API Python script requirements on page 13

Web API Python script requirements
Before a Python script can execute any Python Remote Client commands, it must import the McAfee
Python client library and authenticate with the McAfee ePO server.

Python client script requirements

Every Python script you create must have these two lines of code at the beginning:

McAfee Python script requirements
import mcafee
mc = mcafee.client("localhost","8443","username","password")

In this example:

• import mcafee — Imports the McAfee Python client library into your script. See Import the McAfee
Python client library.

• mc = mcafee.client("localhost","8443","username","password") — Authenticates with the
server. See Script McAfee ePO server authentication

After you complete these two tasks, the remainder of the script functions as expected.

See also
Import the McAfee Python client library on page 13
Script McAfee ePO server authentication on page 13

Import the McAfee Python client library
Import the McAfee Python client library into any script you create to communicate with your McAfee
ePO server.

Task
1 Make sure the mcafee.py file is stored in either the same folder as your script, or in the Python

module search path.

2 Import the client code into your script with this command:

import mcafee

This command imports the McAfee ePO server client code, which includes a method that takes
connection information, establishes a session with the indicated server, and returns a session object.

Script McAfee ePO server authentication
Before any commands can be sent to a McAfee ePO server, authenticate with the server and store the
returned session object.

To allow your script to communicate with the server, use the mcafee.client command which takes
between four and six of these string parameters.

Overview
Web API Python script requirements 1

McAfee ePolicy Orchestrator 5.1.0 Software Reference Guide
Web API Scripting

13

Table 1-2 mcafee.client parameters

Parameter Description

server Contains the name of the server. Do not include the https:// prefix. If your server
name is https://myserver, type myserver in this parameter.

port Contains the port the server uses. This is typically 8443 for HTTPS connections, but
could be different.

username Contains the user name for authentication.

password Contains the password for authentication.

The password used in your script is stored in plain text. Secure your scripts appropriately.
Alternatively, either prompt your user for a password, or store the password encrypted.
The web API does not support certificate authentication.

protocol [optional] Contains the protocol. The default is HTTPS.

outputtype [optional] Contains the output type returned from commands. This value defaults to
json but verbose, terse, and xml are other valid values.

Authentication examples

If you normally log on to your ePOserver on port 8443 with the user name adminfred and password
mydOgsname37, your Python command to log on is:

mc = mcafee.client("ePOserver","8443","adminfred","mydOgsname37")

The mc variable stores the session information used for all later commands in that script. For example,
if the next thing you want to do in the script is list all currently running server tasks, the command is:

mc.scheduler.listRunningServerTasks()

Discover available commands in Python
McAfee extensions can add commands to the McAfee Python client library. The Python client provides a
way to determine which commands are available on your server.

Before you begin
For these commands to work, the script must meet the script conditions described in Web
API Python script requirements.

1 Overview
Discover available commands in Python

14 McAfee ePolicy Orchestrator 5.1.0 Software Reference Guide
Web API Scripting

Task
1 Use the Python dir() command to find the list of modules available.

>>> dir(mc)

This command returns a Python list similar to this:

['__class__', '__delattr__', '__dict__', '__doc__', '__format__', '__getattr__',
'__getattribute__',
 '__hash__', '__init__', '__module__', '__new__', '__reduce__', '__reduce_ex__',
'__repr__', '__setattr__',
'__sizeof__', '__str__', '__subclasshook__', '__weakref__', '_invoker', 'core', 'help',
'scheduler', 'tasklog']

There are a number of attributes in the example, but what you are looking for are the names at the
end of the list without leading underscores. In this example, these are core, help, scheduler, and
tasklog. These objects contain commands you can execute.

The other attribute names with leading underscores are internal to either the client or Python itself.

2 Use the dir() command, passing the module as a parameter, to find the list of commands in a
module.

>>> dir(mc.scheduler)

This command returns a list of attributes and commands in the scheduler module similar to this:

['__doc__', '__getattr__', '__init__', '__module__', '_invoker', '_module',
'cancelServerTask', 'getServerTask', 'listAllServerTasks', 'listRunningServerTasks',
'runServerTask', 'setServerTaskStatus']

As in the previous step, look for names without leading underscores. In this case, there are six
commands: cancelServerTask, getServerTask, listAllServerTasks, listRunningServerTasks,
runServerTask, and setServerTaskStatus.

3 Once you've found a command you want to use, type help() and pass the command as a
parameter.

>>> mc.help('scheduler.listRunningServerTasks')

This command returns a description like this:

scheduler.listRunningServerTasks
Get the list of all running server tasks. Returns the list of tasks or throws an error.
Requires permission to view server tasks.

This description lists the command name and parameters (in this case there aren't any), a
description of what it does, and the permission required to execute it.

Perform similar steps for any command you want to run. These steps help determine all capabilities
available for your scripts.

Additional documentation included with the web API
Several HTML files are included with the web API package that provide more information.

All files are included in the pyclient/Python26/mcafee‑docs folder contained in the package.

Overview
Additional documentation included with the web API 1

McAfee ePolicy Orchestrator 5.1.0 Software Reference Guide
Web API Scripting

15

Table 1-3 Documentation files in the web API package

File Topic

FAQ.html Contains common questions asked when using the Python client.

getting_started.html Contains a brief tutorial for writing Python scripts.

implementation.html Contains Python client implementation details including response formats.

setup.html Contains instructions for installing the Python distribution, or for
customizing an existing installation.

Key commands
Some commands are more commonly used than others. To create scripts quickly, we recommend that
you familiarize yourself with the syntax for these common commands.

These tables list commonly used commands with their syntax and description. Each table covers a
different functional area.

Specify arguments followed by =<> by name. For example, the argument fullName= must be included
in this command, core.addUser("ga", "ga", fullName="Joe Tester")

Table 1-4 Commands for searching, querying, and listing

Command Syntax Description

core.executeQuery core.executeQuery queryId
[database=<>]
core.executeQuery target=<>
[select=<>] [where=<>]
[order=<>] [group=<>]
 [database=<>] [depth=<>]
[joinTables=<>]

Executes a query and returns the results
as a list of objects.

core.help core.help [command]
[prefix=<>]

Lists all registered commands, and
displays help strings.

core.listDatabases core.listDatabases Returns all databases the user is
permitted to see as a list of objects.

core.listQueries core.listQueries Returns all queries the user is permitted
to see as a list of objects.

core.listTables core.listTables [table=<>] Returns all database tables the user is
permitted to see as a list of objects.

policy.find policy.find searchText Finds all policies that the user is
permitted to see that match the given
search text.

repository.find repository.find searchText Finds all repositories that the user is
permitted to see that match the given
search text.

system.find system.find searchText Finds systems in the System Tree.

1 Overview
Key commands

16 McAfee ePolicy Orchestrator 5.1.0 Software Reference Guide
Web API Scripting

Table 1-5 Commands for creating, importing, and exporting

Command Syntax Description

core.addUser core.addUser userName password
[fullName=<>] [email=<>]
[phoneNumber=<>] [notes=<>]
[disabled=<>]
[admin=<>]
core.addUser userName=<>
windowsUserName=<>
windowsDomain=<> [fullName=<>]
[email=<>] [phoneNumber=<>]
[notes=<>]
[disabled=<>] [admin=<>]
core.addUser userName=<>
subjectDN=<> [fullName=<>]
[email=<>]
[phoneNumber=<>] [notes=<>]
[disabled=<>]
[admin=<>]

Adds a user to the system.
Authentication parameters
are mutually exclusive:
either password,
windowsUserName/
windowsDomain, or
subjectDN can be
specified.

core.importPermissionSets core.importPermissionSets file
[overwrite]

Imports permission sets
from a file.

core.exportPermissionSets core.exportPermissionSets Exports all permission sets
as an XML string.

system.importSystem system.importSystem fileName
branchNodeID [allowDuplicates]
[uninstallRemoved] [pushAgent]
[pushAgentForceInstall]
[pushAgentSkipIfInstalled]
[pushAgentSuppressUI]
[pushAgentInstallPath]
[pushAgentPackagePath]
[pushAgentDomainName]
[pushAgentUserName]
[pushAgentPassword]
[deleteIfRemoved]
[createNewInLostAndFound]
[flattenTreeStructure

Imports systems from a
text file or a supplied
comma-separated list.

repository.checkInPackage repository.checkInPackage
packageLocation branch [option]
[moveToPrevious]
[allowUnsignedPackages]

Checks package into the
master repository.

Table 1-6 Commands for editing, assigning, and moving

Command Syntax Description

core.updateUser core.updateUser userName
[password=<>]
[windowsUserName=<>]
[windowsDomain=<>]
[subjectDN=<>] [newUserName=<>]
[fullName=<>]
[email=<>] [phoneNumber=<>]
[notes=<>]
[disabled=<>] [admin=<>]

Updates an existing user.
Authentication parameters are
mutually exclusive: either
password, windowsUserName/
windowsDomain, or subjectDN
can be specified.

core.addPermSetsForUser core.addPermSetsForUser userName
permSetName

Adds the given permission set
to the specified user.

Overview
Key commands 1

McAfee ePolicy Orchestrator 5.1.0 Software Reference Guide
Web API Scripting

17

Table 1-6 Commands for editing, assigning, and moving (continued)

Command Syntax Description

system.applyTag system.applyTag names tagName Assigns the given tag to a
supplied list of systems.

system.setUserProperties system.setUserProperties name
[description] [customField1]
[customField2] [customField3]
[customField4]

Sets user properties on the
given system.

system.deployAgent system.deployAgent names username
[password]
[agentPackage] [skipIfInstalled]
[suppressUI]
[forceInstall] [installPath]
[domain]
[useAllHandlers]
[primaryAgentHandler]
[retryIntervalSeconds] [attempts]
[abortAfterMinutes]
[includeSubgroups] [useSsh]
[inputSource]

Deploys an agent to the given
list of systems.

policy.assignToSystem policy.assignToSystem names
productId typeId objectId
[resetInheritance]

Assigns the policy to a
supplied list of systems.

Table 1-7 Commands for running and aborting

Command Syntax Description

clienttask.run clienttask.run names productId
taskID
[retryAttempts]
[retryIntervalInSeconds]
[abortAfterMinutes]
[useAllAgentHandlers]
[stopAfterMinutes]
[randomizationInterval]

Runs the client task on
a supplied list of
systems.

scheduler.cancelServerTask scheduler.cancelServerTask taskLogId Ends a currently
running task.

scheduler.runServerTask scheduler.runServerTask taskName Runs the specified
server task.

system.wakeupAgent system.wakeupAgent names [fullProps]
[superAgent] [randomMinutes]
[forceFullPolicyUpdate]
[useAllHandlers]
[retryIntervalSeconds]
[attempts] [abortAfterMinutes]
[includeSubgroups]

Wakes up the agent on
a supplied list of
systems.

repository.pull repository.pull sourceRepository
targetBranch [moveToPrevious]
[productList]

Pulls packages from the
source repository.

1 Overview
Key commands

18 McAfee ePolicy Orchestrator 5.1.0 Software Reference Guide
Web API Scripting

Table 1-8 Commands for deleting and purging

Command Syntax Description

commonevent.purgeEvents commonevent.purgeEvents queryId
[unit]

Deletes threat events based on
age or a queryId. The query
must be table-based.

core.purgeAuditLog core.purgeAuditLog [age] [unit] Purges the audit log by age.

system.delete system.delete names [uninstall] Deletes systems from a McAfee
ePO server by name or ID.

tasklog.purge tasklog.purge [age] [unit] Purges the task log by age.
Defaults to purging all entries.

Overview
Key commands 1

McAfee ePolicy Orchestrator 5.1.0 Software Reference Guide
Web API Scripting

19

1 Overview
Key commands

20 McAfee ePolicy Orchestrator 5.1.0 Software Reference Guide
Web API Scripting

2 Example Python scripts

Creating some example Python scripts can show you the various ways scripting can help keep your
McAfee ePO servers maintained and up-to-date.
Go through these scripts, taken from differing categories of tasks, in this order.

1 Tag systems from a list.

2 Take a tag as input and send a McAfee Agent wake-up call to all systems with that tag.

3 Apply automation to cleaning up disabled ePolicy Orchestrator users.

4 Import computers from an external file and adding them to the System Tree.

5 Export policies and client tasks from one McAfee ePO server and import them into another.

6 Organize your System Tree.

These scripts slowly build on each other and the concepts explained.

Later scripts don't repeat concepts explained in earlier scripts.

Contents
 Example 1: Tag systems from a list
 Example 2: Automate repetitive tasks on managed systems
 Example 3: Automate user management
 Example 4: Import computers from external sources
 Example 5: Import and export data
 Example 6: Automate maintenance of the System Tree

Example 1: Tag systems from a list
You can learn the basics of writing Python scripts using this example and the ePolicy Orchestrator web
API. After showing you the entire script, the individual parts of the script are described in detail.

This script assumes:

• You have a text file, myfile.txt, with a list of managed systems with one system per line and the
systems are listed by name or IP address

• You want to apply a specific tag, in this example myTag, to every system in that list

• The tag named myTag has already been created

A more robust script would manage those assumptions, but that would complicate the example.

#Example 1
import mcafee
mc = mcafee.client('localhost','8443','ga','ga')

2

McAfee ePolicy Orchestrator 5.1.0 Software Reference Guide
Web API Scripting

21

file = open('C:/path/to/myfile.txt', 'r')
for line in file:
 mc.system.applyTag(line.rstrip(‘\n’), 'myTag')

Examine the various script sections in detail

This line in the script imports the provided McAfee Python module (mcafee.py), kept in the same
directory as your script.

import mcafee

The next line creates the connection to the McAfee ePO server by specifying the server name,
connection port, user name, and password, in that order.

This initialization function can take up to two more parameters that specify the protocol and the
presentation of the output.

mc = mcafee.client('localhost','8443','ga','ga')

The full parameter list is:

mc = mcafee.client('yourservername','port','username','password', 'protocol',
'outputtype')
• The protocol defaults to https on your McAfee ePO server.

• The outputtype determines the format of output from commands as described in Web API Basics.

With those two lines, you've established a connection to your server.

This line creates your file handle in read-only mode.

file = open('C:/path/to/myfile.txt', 'r')

These lines iterate through the file, run the command system.applyTag to each system in the file,
while stripping out the newline ('\n'):

 for line in file:
 mc.system.applyTag(line.rstrip(‘\n’), 'myTag')

After finishing the loop, each system in the file has the tag myTag applied.

Example 2: Automate repetitive tasks on managed systems
You can take a tag name for input and send a McAfee Agent wake-up call to all systems having that
tag with this example script.

#Example 2
import mcafee
mc = mcafee.client('localhost','8443','ga','ga')

input = 'myTag'
systems = mc.system.find(input)
for system in systems:
 id = system['EPOComputerProperties.ParentID']
 result = mc.system.wakeupAgent(id)

2 Example Python scripts
Example 2: Automate repetitive tasks on managed systems

22 McAfee ePolicy Orchestrator 5.1.0 Software Reference Guide
Web API Scripting

This script takes a single argument as input, in this example myTag. It uses the system.find
command to search for all computers with that tag.

Your input could be something other than a tag, for example the system.find command description
displays "Find Systems in the ePolicy Orchestrator tree by name, IP address, MAC address, user name,
AgentGUID, or tag."

This script uses the EPOComputerProperties.ParentID property to send to the system.wakeupAgent
command, but since that command also takes a name, that line could have been written as:

id = system['EPOComputerProperties.ComputerName']

You could build a comma-delimited string and send the list to the command directly since
system.wakeupAgent also accepts a list of names or IDs as input.

Example 3: Automate user management
You use this script to search through all ePolicy Orchestrator users and deletes any marked as
"disabled" if they are not administrators.

Also, this script provides examples of more detailed handling of actions, plus an exception when the
user deletion is unsuccessful.

#Example 3
import mcafee
mc = mcafee.client('localhost','8443','ga','ga')

users = mc.core.listUsers();
for user in users:
 if user['disabled'] == True and user['admin'] == False:
 name = user['UserName']
 try:
 mc.core.removeUser(name)
 except Exception, e:
 print 'Error ' + str(e)

To see the available properties examine the output from the core.listUsers command. This script
uses the disabled, admin, and UserName properties to find and remove specific users.

The core.removeUser command requires administrator rights to execute. Required permissions for
each command are listed in its detailed help.

The core.listUsers command returns different values for the authType. This table lists the
human-readable formats, used in the user interface, and the machine-readable formats.

Human readable Machine readable

MFS authentication pwd

Certificate Based Authentication cert

Windows authentication ntlm

Example Python scripts
Example 3: Automate user management 2

McAfee ePolicy Orchestrator 5.1.0 Software Reference Guide
Web API Scripting

23

Example 4: Import computers from external sources
You can use this script to take a comma-delimited file containing system information, and import
those systems into a specified McAfee ePO server System Tree group.

This script assumes that there are these two source files:

• myfile.txt — Contains the System Tree group where the systems are added

• systemsToAdd.txt — Contains one system per line with comma-delimited properties in this order:
MAC address, IP address, system name, and domain name

#Example 4
import mcafee, sys
mc = mcafee.client('localhost','8443','ga','ga','https','json')

file = open('C:/myfile.txt', 'r')
for line in file:
 #determine the ID of the group to add it to
 groups = mc.system.findGroups(line.rstrip('\n'))
 groupId = -1
 for group in groups:
 if group['groupPath'] == 'My Organization\\' + line.rstrip('\n'):
 groupId = group['groupId']

 if groupId == -1:
 error = 'Error finding the specified group.'
 sys.exit(error)

#now that we have the group id, pull in the systems from file
sourceId = "12"
sourceType = "CLI"
file = open('C:/systemsToAdd.txt', 'r')
for line in file:
 sysProps = line.rstrip('\n').split(',')
 # Contains line break at "\"
 systemId = mc.detectedsystem.add(sourceId,sourceType,sysProps[0],sysProps[1],dnsName= \
 sysProps[2],do main=sysProps[3])
 mc.detectedsystem.addToTree(str(systemId),str(groupId))

This example first determine where to add the systems using the system.findGroups() command
searches for the group by name and, using that name, obtains the group ID.

The systems are added to the group with the detectedsystem.add command. This command has
these optional parameters:

detectedsystem.add sourceID sourceType MAC IPAddress [IPSubnet][IPSubnetMask][dnsName]
[OSPlatform] [OSFamily] [OSVersion]
[domain] [netbiosName][netbiosComment] [users] [agentGUID] [detectedTime] [externalID]

You can add optional parameters in order (using any values for parameters you aren't providing).
These optional parameters are, for example:

mc.detectedsystem.add(sourceId, sourceType,sysProps[0], sysProps[1], "0.0.0.0", "0.0.0.0",
sysProps[2], '', '', '', sysProps[3])

You can also assign parameters by name with the dnsName and domainName parameters in this script.

The parameters sourceID and sourceType are arbitrary values defined when you add the systems.
These parameters are stored in the database to record what source detected, or added, any given
system.

2 Example Python scripts
Example 4: Import computers from external sources

24 McAfee ePolicy Orchestrator 5.1.0 Software Reference Guide
Web API Scripting

The return value of this command is the ID of the newly added detected system. You use this ID as
input to this command () which adds detected systems to the System Tree.

detectedsystem.addToTree UIDs branchNodeID [allowDuplicates] [dirSort]

By default, the system is not added if it's a duplicate and it is not automatically sorted, but you can
override these defaults if you want. This script accepts the defaults and, using the newly obtained
detected system ID and the group ID, moves this system into the System Tree.

Example 5: Import and export data
You can export data from an McAfee ePO server and import that data to another McAfee ePO server
with a script.

Importing and exporting common settings for permissions, policies, or other ePolicy Orchestrator
objects is useful when performing server migrations, setting up a secondary McAfee ePO server, or
simply creating a test environment. This script exports client tasks and policies for a given product,
then imports them to a second server.

#Example 5
import mcafee
mc = mcafee.client('localhost','8443','ga','ga','https','json')

Find the product id
productId = None
policies = mc.policy.find('McAfee Agent')
for policy in policies:
 productId = policy['productId']

if productId == None:
 error = 'Error finding the product id.'
 sys.exit(error)

tasks = mc.clienttask.export(productId=productId)
file = open('tasks.xml', 'w')
print >>file, tasks
file.close()

policies = mc.policy.export(productId=productId)
file = open('policies.xml', 'w')
print >>file, policies
file.close()

Import these into another server:
mc2 = mcafee.client('anotherEpoServer','8443','ga','ga','https','json')
mc2.clienttask.importClientTask(uploadFile='file:///tasks.xml')
mc2.policy.importPolicy(file='file:///policies.xml')

The script retrieves the product ID by searching for a policy containing the string 'McAfee Agent'.
Using that product ID, you can export all client tasks and policies for that product.

To import the tasks and policies, create a connection to a second ePolicy Orchestrator server (mc2) and
run the corresponding import commands.

Example 6: Automate maintenance of the System Tree
You can use this script to reapply System Tree sorting rules to any systems found in the Lost&Found
System Tree group.

#Example 6
import mcafee

Example Python scripts
Example 5: Import and export data 2

McAfee ePolicy Orchestrator 5.1.0 Software Reference Guide
Web API Scripting

25

mc = mcafee.client('localhost','8443','ga','ga','https','json')

#first, as before, get the id of the Lost&Found group
groups = mc.system.findGroups('Lost&Found')
groupId = -1
for group in groups:
 if group['groupPath'] == 'My Organization\\Lost&Found':
 groupId = group['groupId']

 if groupId == -1:
 error = 'Error finding the specified group.'
 sys.exit(error)

#find all systems for this group
systems = mc.epogroup.findSystems(str(groupId),'true')
for system in systems:
 id = system['EPOComputerProperties.ParentID']
 mc.system.resort(str(id))

This example is fairly straightforward given the previous example scripts. This example introduces a
new command, epogroup.findSystems, which finds all systems in a given group. The last parameter,
'true' determines whether to search all subgroups. In this example, this parameter is set to true,
the command iterates through all systems found under Lost&Found and any of its subgroups, then
reapplies the sorting rules to those systems.

2 Example Python scripts
Example 6: Automate maintenance of the System Tree

26 McAfee ePolicy Orchestrator 5.1.0 Software Reference Guide
Web API Scripting

3 Remote queries

ePolicy Orchestrator remote commands allow you to query your database remotely using the web API.
These commands allow you to execute persistent queries, which exist in the ePolicy Orchestrator
database, as well as dynamic user-defined ad-hoc queries.

Contents
 Persistent queries
 Ad-hoc queries
 Queries with joins
 Remote query commands
 Ad-hoc query reference

Persistent queries
A persistent query is accessible using the Queries and Reports page in the ePolicy Orchestrator user
interface.

Persistent queries include both pre-installed queries and queries you create. You must know the query
ID to remotely execute a persistent query.

Query examples

In all of these query examples, the first two lines of the example contain the URL and Python forms of
the command. For example, the examples of the core.listQueries command appear as:

URL: https://servername:port/remote/core.listQueries
Python: mc.core.listQueries();

The URL example could be typed directly into your browser address bar as:

https://localhost:8443/remote/core.listQueries

Or, the URL example could be used with a cURL command as:

> curl -k -u ga:ga https://localhost:8443/remote/core.listQueries

The Python example could be used as:

import mcafee
mc = mcafee.client('localhost','8443','ga','ga')
mc.core.listQueries();

Find available queries

You must find the queries available and the query IDs before you can run any remote queries.

3

McAfee ePolicy Orchestrator 5.1.0 Software Reference Guide
Web API Scripting

27

Use the core.listQueries command to find the ID of any persistent query that you can access.

URL: https://servername:port/remote/core.listQueries
Python: mc.core.listQueries();

OK:
Id: 1
Name: Effective permissions for users
Description: Shows all the permissions for each user
Criteria: (where (ne EntitlementView.RoleUri "%%NOEPOROLES%%"))
Group Name: Permission Queries
Owner: ga
Database Type:
Target: EntitlementView
Created by: ga
Created on: 10/25/10 8:40:33 AM PDT
Modified by: ga
Modified on: 10/25/10 8:40:33 AM PDT

Id: 2
Name: Permission set details
Description: Shows the permissions associated with each permission set

Remotely execute the query

Run the query using the core.executeQuery command with the queryId parameter once you know
the query ID. This example uses "5" as the query ID

URL: https://servername:port/remote/core.executeQuery?queryId=5
Python: mc.core.executeQuery('5');

OK:
User Name: ga
Action: Create Response
Success: true
Start Time: 10/26/10 9:00:24 AM PDT

User Name: ga
Action: Create Response
Success: true
Start Time: 10/26/10 9:00:24 AM PDT

Ad-hoc queries
Ad-hoc queries are performed entirely remotely and do not rely on a query stored in an ePolicy
Orchestrator database.

In an ad-hoc query, you specify the target of the query and up to four of the parameters in this table.

Table 3-1 Ad-hoc query parameters

Clause Description Behavior if omitted

select Controls which columns from the target table (and
any joined tables) the query returns.

All columns in the target table are
returned.

condition The condition parameter filters results. Only
records in the database that satisfy the filtering
clause are returned.

All rows are returned.

group Controls grouping of the returned data. The returned data is not grouped.

order Controls the order of the returned data (either
ascending or descending by columns).

The returned rows are ordered
according to the natural order of the
database.

3 Remote queries
Ad-hoc queries

28 McAfee ePolicy Orchestrator 5.1.0 Software Reference Guide
Web API Scripting

You can use the core.listTables, core.listDatabases, and core.listDatatypes commands to
determine the names and types of target table columns. This information makes it easy to determine
which columns to select, and which operations are allowed in the condition.

Example ad-hoc queries

This query is a simple ad-hoc query against the OrionAuditLog table.

URL: https://servername:port/remote/core.executeQuery?target=OrionAuditLog&select=(select
OrionAuditLog.UserName OrionAuditLog.CmdName)

Python: mc.core.executeQuery(target="OrionAuditLog", select="(select OrionAuditLog.UserName
OrionAuditLog.CmdName)");

OK:
User Name:
Action: Server restart

User Name: ga
Action: Login attempt

User Name: ga
Action: Upload Extension

This query returns the CmdName and EndTime for all audit log entries. The results are grouped
alphabetically by the CmdName, then by the EndTime.

URL: https://servername:port/remote/core.executeQuery?target=OrionAuditLog& select=(select
OrionAuditLog.CmdName.OrionAuditLog.EndTime)& group=(group.OrionAuditLog.CmdName
OrionAuditLog.EndTime)

Python: mc.executeQuery(target="OrionAuditLog", select="(select OrionAuditLog.CmdName
OrionAuditLog.EndTime)",
group="(group OrionAuditLog.CmdName OrionAuditLog.EndTime)");

OK:
User Name: ga
Priority: 1
Action: Login attempt
Details: Failed logon for user "ga" from IP Address: 172.1.6.1
Success: false
Start Time: 10/11/12 4:41:18 PM PDT
Completion Time: 10/11/12 4:41:18 PM PDT

User Name: system
Priority: 1
Action: Server restart
Details: Server was started.
Success: true
Start Time: 10/11/12 4:41:42 PM PDT
Completion Time: 10/11/12 4:41:42 PM PDT

This query returns all OrionTaskLog entries the "ga" user created. The results are listed in ascending
order of the task StartDate.

https://servername:port/remote/core.executeQuery?target=OrionTaskLogTask& where=(where (eq
(OrionTaskLogTask.UserName "ga"))) & order=(order (asc OrionTaskLogTask.StartDate))

Python: mc.core.executeQuery(target="OrionTaskLogTask", where="(where (eq
(OrionTaskLogTask .UserName "ga")))", order="(order (asc OrionTaskLogTask.StartDate))");

OK:
Name: Deploy McAfee Agent
Start Date: 10/11/12 5:00:01 PM PDT
End Date: 10/11/12 5:00:38 PM PDT
User Name: ga

Remote queries
Ad-hoc queries 3

McAfee ePolicy Orchestrator 5.1.0 Software Reference Guide
Web API Scripting

29

Status: 0
Source: scheduler
Duration: 36846

Name: Deploy McAfee Agent
Start Date: 10/11/12 5:04:19 PM PDT
End Date: null
User Name: ga
Status: 10
Source: scheduler
Duration: 1889951790

ePolicy Orchestrator uses symbolic expressions (S-expressions) internally as a portable and
database-agnostic schema to define queries and operations. All values passed to each parameter must
be valid S-expressions.

Create an ad-hoc query from a query definition
Queries stored in ePolicy Orchestrator can be exported and duplicated in a script.
If you have an existing persistent query, and you can define it as an ad-hoc query using core
.executeQuery. Use the Export Definitions action in ePolicy Orchestrator to obtain the internal
representation of the query. In almost all cases, the exported definition can be used to construct the
core.executeQuery method call. For example, starting with an existing query as a model, then you
modify the parameters, filtering, or sorting when executing the query from a script.

This is an example of using an exported persistent query to create an ad-hoc query.

Example
This is a typical exported query definition:

<query>
 <name language="en">My AuditLogQuery</name>
 <description language="en"></description>
 <property name="target">OrionAuditLog</property>
 <property name="tableURI">query:table?orion.table.columns=OrionAuditLog.UserName
%3AOrionAuditLog.CmdName%3A
OrionAuditLog.Success
%3AOrionAuditLog.StartTime&orion.table.order.by=OrionAuditLog.CmdName
&orion.table.order=asc</property>
 <property name="conditionURI">query:condition?orion.condition.sexp=%28+where+%28+olderThan+
OrionAuditLog.EndTime+3600000++%29+%29</property>
 <property name="summaryURI">query:summary?
orion.sum.query=false&orion.query.type=table.table</property>
</query>

Dissect this definition as:

• The target attribute is used directly as the target parameter of the ad-hoc query.

• The conditionURI attribute contains the S-Expression to use as the where parameter.

In an S-expression, the SELECT clause mirrors the limitations of a SELECT SQL clause. The SELECT
clause operations include columns and unary operations on table columns. For example, Count, Max,
Top, and others.

The unary operators work on only one expression of any one of the data types of the numeric data
type category. For example, you cannot use SUM, or any other aggregate operations, with SELECT.

The best way to become familiar with what SELECT clause arguments are supported, and their
limitations in an ad-hoc query S-expression, is to export queries and examine their structure.

Remember that the exported form of the query contains strings that are URL-encoded. To form a valid
query string, decode the URL-encoded characters. For example:

3 Remote queries
Ad-hoc queries

30 McAfee ePolicy Orchestrator 5.1.0 Software Reference Guide
Web API Scripting

• "+" is used for a single space " "

• %28 is an opening parenthesis "("

• %29 is a closing parenthesis ")"

• %3A is a colon ":"

This is the equivalent ad-hoc URL query using the exported query definition:

https://servername:port/remote/core.executeQuery?target=OrionAuditLog&select=(select
OrionAuditLog.UserName OrionAuditLog.CmdName OrionAuditLog.Success
OrionAuditLog.StartTime)&where=(where(olderThan OrionAuditLog.EndTime
36000000))&order=(order(asc OrionAuditLog.CmdName))

This is the equivalent ad-hoc Python query using the exported query definition:

mc.core.executeQuery(target="OrionAuditLog",
select="(select OrionAuditLog.UserName OrionAuditLog.CmdName OrionAuditLog.Success
OrionAuditLog.StartTime)",
where="(where(olderThan OrionAuditLog.EndTime 36000000))",
order="(order(asc OrionAuditLog.CmdName))");

This equivalent ad-hoc query returns this output:

OK:
User Name: ga
Priority: 1
Action: Login attempt
Details: Failed logon for user "ga" from IP Address: 172.1.5.1
Success: false
Start Time: 10/11/12 4:41:18 PM PDT
Completion Time: 10/11/12 4:41:18 PM PDT

User Name: system
Priority: 1
Action: Server restart
Details: Server was started.
Success: true
Start Time: 10/11/12 4:41:42 PM PDT
Completion Time: 10/11/12 4:41:42 PM PDT
.
.
.

Get information about registered databases and tables
You can use remote query commands to get information about registered databases and tables. This
information is needed to create ad-hoc queries.

You can use the core.listTables command to get details about each table in the system, including
the names and types of the columns.

Example output

This output is from the core.listTables command run on the OrionAuditLog table.

Name: Audit Log Entries
Target: OrionAuditLog
Type: target
Database Type:
Description: Retrieves information on changes and actions made by users of this server.
Columns:
 Name Type Select? Condition? GroupBy? Order? Number?
 --------- ------------- ------- ---------- -------- ------ -------
 AutoId int false false false true true
 UserId int false false false true true

Remote queries
Ad-hoc queries 3

McAfee ePolicy Orchestrator 5.1.0 Software Reference Guide
Web API Scripting

31

 UserName string_lookup true true true true false
 Priority enum true true true true false
 CmdName string_lookup true true true true false
 Message string true true false true false
 Success boolean true true true true false
 StartTime timestamp true true true true false
 EndTime timestamp true true true true false
Related Tables:
 Name

Foreign Keys: None

You can use the core.listTables command to list the columns, their types, whether the column can
be used in the select, condition, group or order parameters, and whether the column is a number.
The command also lists any registered related tables that can be joined with the joinTables
parameter.

Get information on registered databases

You can use the core.listDatabases command to get details about each database in the system.
This information can then be used to create ad-hoc queries.

In general, when issuing queries against targets that are not part of the default schema, prepend the
database name to the target. For example, to reference an "OutsidePolicy" target that is part of an
"Outsider" database, you would use the identifier "target=Outsider.OutsidePolicy".

Queries with joins
You can use joins to display information from two or more tables. These joins are handled
automatically.

To use the join functionality, specify the tables (targets) and the columns from those tables that you
want in the core.executeQuery select parameter. The underlying query system computes the
necessary join criteria transparently and displays the correct results.

An error appears if there is no join information registered for the tables when the query runs.

You can use the core.listTables command to determine which tables are related and are capable of
participating in joins. The relatedTables table property contains this join information.

Example query with a join

This example executes a simple join between the OrionTaskLogTask and OrionTaskLogMessage
tables.

URL: https://servername:port/remote/core.executeQuery?
target=OrionTaskLogTaskMessage&select=(select OrionTaskLogTask.Name
OrionTaskLogTaskMessage.Message)&joinTables=OrionTaskLogTask

Python: mc.core.executeQuery(target="OrionTaskLogTaskMessage", select="(select
OrionTaskLogTask.Name OrionTaskLogTaskMessage.Message)", joinTables="OrionTaskLogTask")

OK:
Name: New Task
Message: Purge audit log

Name: New Task
Message: Purge audit log (Purge log records older than: 1 days)

3 Remote queries
Queries with joins

32 McAfee ePolicy Orchestrator 5.1.0 Software Reference Guide
Web API Scripting

Retrieve hierarchical query results
Queries involving joined tables can return results in a hierarchy.

The core.executeQuery command can also be used in joinTables mode. In this mode, you specify
only the tables you want joined. The results of the query are used as keys to perform a subquery for
all related results from the joined table. The joined table creates a hierarchical result set that could
contain nested results. The nested results level depends on how many join tables are specified.

To join tables using core.executeQuery, you specify a comma-separated list of tables to join as the
joinTables parameter. You do not specify a select parameter when joining tables. The results are
returned as a result hierarchy with each record of the parent table becoming the parent node of the
related records in each child table. The hierarchy continues until all joined tables are displayed.

Example

This example executes a simple join between the OrionTaskLog and the OrionTaskLogMessage
tables.

OK:
<?xml version="1.0" encoding="UTF-8"?>
<result>
 <list>
 <row>
 <OrionTaskLogTask.Name>New Task</OrionTaskLogTask.Name>
 <OrionTaskLogTask.StartDate>2010-11-23T13:01:37-08:00</OrionTaskLogTask.StartDate>
 <OrionTaskLogTask.EndDate>2010-11-23T13:01:37-08:00</OrionTaskLogTask.EndDate>
 <OrionTaskLogTask.UserName>ga</OrionTaskLogTask.UserName>
 <OrionTaskLogTask.Status>0</OrionTaskLogTask.Status>
 <OrionTaskLogTask.TaskSource>scheduler</OrionTaskLogTask.TaskSource>
 <OrionTaskLogTask.Duration>493</OrionTaskLogTask.Duration>
 <OrionTaskLogTaskMessage>
 <list>
 <row>
 <OrionTaskLogTaskMessage.Message>Purge audit log</OrionTaskLogTaskMessage.Message>
 </row>
 <row>
 <OrionTaskLogTaskMessage.Message>Purge audit log (Purge log records older than: 1
days)</OrionTaskLogTaskMessage.Message>
 </row>
 </list>
 </OrionTaskLogTaskMessage>
 </row>
 </list>
</result>

This output shows the core.executeQuery command returned each top-level object (the
OrionTaskLogTask record) and its two associated message records. The output is shown as XML to
highlight the hierarchical arrangement of the results.

Limit query result depth
Queries that join tables can return results with deep hierarchies. You can control this depth using
parameters.

A query that doesn't use joins returns tabular results. Tabular results are defined as having a depth of
one. Queries that use the joinTable parameter return hierarchical results. Specifying more than one
table in a joinTable parameter can result in a multi-level result set. Each level of objects increases

Remote queries
Queries with joins 3

McAfee ePolicy Orchestrator 5.1.0 Software Reference Guide
Web API Scripting

33

the result depth by one. To prevent result sets from becoming too deep, the core.executeQuery
command defaults to a maximum depth of 5 levels. If this default limit is too restrictive for the query
being run, you can change it with a new value for the depth parameter.

Ad-hoc queries that return deep result sets can take a long time to run and can consume many system
resources to generate. You should consider this when joining more than two tables, or increasing the
query result depth limit.

Remote query commands
You can use a few commands when executing remote queries.

Specify arguments followed by "=<>" by name. For example, the argument "target=" must be included
in the command, core. For example, executeQuery?target=EntitlementView

Table 3-2 Remote query commands

Command Syntax Description

core.executeQuery core.executeQuery queryId
[database=<>]
core.executeQuery target=<>
[select=<>] [where=<>] [order
=<>] [group=<>] [database=<>]
[depth=<>] [joinTables=<>]

Executes a query and returns the results
as a list of objects.

core.listDatabases core.listDatabases Returns all databases the user is
permitted to see as a list of objects.

core.listTables core.listTables [table] Returns all database tables the user is
permitted to see as a list of objects.

core.listQueries core.listQueries Returns all queries the user is permitted
to see as a list of objects.

core.listDatatypes core.listDatatypes Returns a list of all types and their
supported operations.

Ad-hoc query reference
Ad-hoc queries require operators, data types, and other information that you can access in your
scripts.

In general, the data type in the column dictates the operators that the column supports. For example:

• Data type string supports the startsWith and endsWith operations

• Number columns support the gt and lt operations

The data types and types of columns in a target can be determined using the core.listTables
command.

These tables provide these basic elements and examples of their use.

3 Remote queries
Remote query commands

34 McAfee ePolicy Orchestrator 5.1.0 Software Reference Guide
Web API Scripting

General query datatypes
You must store data in ePolicy Orchestrator databases with specific types in remote queries.

Table 3-3 General query datatypes

Type Description

Int An integer

string_lookup A lookup string field

Enum An enumerated value, stored in the database as an integer

Mac A MAC address

Long A long value

Float A float value

Timespan An SQL timespan

boolean A Boolean value

string_enum An enumerated value stored as a string instead of an integer

ipv4 An IPv4 address

ipv6 An IPv6 address

General S-Expression operations
ePolicy Orchestrator uses S-Expressions internally to define queries and operations. These
S-Expressions must be used correctly.

These tables show operators you can use on S-expressions to define queries.

Table 3-4 General S-Expression Operations

Operator Description Example

and Logical AND of two or more
S-Expressions.

(where (and (eq OrionAuditLog
.UserName "ga") (eq OrionAuditLog
.Priority 1)))

or Logical OR of two or more
S-Expressions.

(where (or (eq OrionAuditLog
.UserName "ga") (eq OrionAuditLog
.UserName "admin")))

not Logical negation of an S-Expression. (where (not (eq OrionAuditLog
.UserName "ga")))

eq Logical comparison for equality. (where (eq OrionAuditLog.UserName
"ga"))

ne Logical comparison for inequality. (where (ne OrionAuditLog.UserName
"ga"))

gt Logical comparison for greater than. (where (gt OrionAuditLog.Priority
1))

lt Logical comparison for less than. (where (lt OrionAuditLog.Priority
3))

ge Logical comparison for greater than or
equal.

(where (ge OrionAuditLog.Priority
2))

le Logical comparison for less than or
equal.

(where (le OrionAuditLog.Priority
2))

is_Blank Returns the row if the column value is
null or the trimmed value is empty.

(where (isBlank OrionAuditLog
.UserName))

Remote queries
Ad-hoc query reference 3

McAfee ePolicy Orchestrator 5.1.0 Software Reference Guide
Web API Scripting

35

Table 3-4 General S-Expression Operations (continued)

Operator Description Example

not_isBlank Returns the row if the column value is
not null or the trimmed value is not
empty.

(where (not_isBlank OrionAuditLog
.UserName)))

in Returns the row if the following item
(usually a property or value) is in a
following list. This is similar to the SQL
IN directive.

(where (in OrionAuditLog.UserName
"ga" "bob"))

contains Returns the row if the column value
contains the stubstring argument value.

(where (contains OrionAuditLog
.UserName "ga"))

notContains Returns the row if the column value does
not contain the stubstring argument
value.

(where (notContains OrionAuditLog
.UserName "ga"))

startsWith Returns the row if the string starts with
the supplied string. Similar to column in
s% in SQL.

(where (startsWith OrionAuditLog
.UserName "g"))

endsWith Returns the row if the column ends with
the argument value.

(where (endsWith OrionAuditLog
.UserName "a"))

like Returns the row if the column contains a
value that matches the pattern. Similar
to like in SQL.

(where (like OrionAuditLog.UserName
"ga"))

newerThan Returns the row if the first timestamp
parameter is newer than the second
timestamp parameter.

(where (newerThan OrionAuditLog
.EndTime 3600000))

olderThan Returns the row if the first timestamp
parameter is older than the second
timestamp parameter.

(where (olderThan OrionAuditLog
.EndTime 36000000))

between Returns the row if the timestamp or IP
address argument (column or value)
likes between the two values.

(where (between OrionAuditLog
.EndTime (timestamp 1288888320000)
(timestamp 1288888360000)))

beforeNow Returns the row if the timestamp value
(column or value) is before the current
time.

(where (beforeNow OrionAuditLog
.EndTime))

match_any Returns the row if the IP address
matches one in the following list.

(where(match_any
EPOComputerProperties.IPV4x (ipv4
"192.168.1.1")))

notBetween Returns the row if the IP address is not
between the two argument addresses.

(where (notBetween
EPOComputerProperties.IPV4x (ipv4
"192.168.1.1")(ipv4 "192.168.255.
255")))

not_in_subnet Returns the row if the address is not in
the given subnet.

(where (not_in_subnet
EPOComputerProperties.IPV4x (ipv4
"255.255.255.0") 25))

in_subnet Returns the row if the address is in the
given subnet.

(where (in_subnet
EPOComputerProperties.IPV4x (ipv4
"255.255.255.0") 25))

in_ipv6_subnet Returns the row if the address is in an
IPv6 subnet.

(where (not_in_ipv6_subnet
EPOComputerProperties.IPV6 (ipv6 "0
.0.0.0") 1))

not_match_any Returns the row if the argument IPv6
address does not match one of the
argument addresses.

(where(not_match_any
EPOComputerProperties.IPV6 (ipv6
"fc00::/7")))

3 Remote queries
Ad-hoc query reference

36 McAfee ePolicy Orchestrator 5.1.0 Software Reference Guide
Web API Scripting

Table 3-5 Selection-only S-Expressions

Operator Description Example

Distinct Selects records that contain a distinct output
value in a given column. Similar to the SQL
distinct directive.

(select (distinct) OrionAuditLog
.UserName)

If you use an order clause with select distinct, include the order columns in the
selection.

Top N Selects the first N records to display. N must be
an integer. Similar to the Microsoft SQL Top, or
the MySQL Limit clause.

(select (top 5) OrionTaskLogTask
.Name OrionTaskLogTask
.StartDate)

S-Expression operator and datatype combinations
You can only use certain datatypes with each S-Expression operator. Use this table to confirm you are
using the data types and operators correctly.

Remote queries
Ad-hoc query reference 3

McAfee ePolicy Orchestrator 5.1.0 Software Reference Guide
Web API Scripting

37

Special ePolicy Orchestrator datatypes
ePolicy Orchestrator creates a number of special datatypes used for various objects.

Table 3-6 Special ePolicy Orchestrator datatypes

Type Description

applied_tags Used for the EPOLeafNode.AppliedTags column to determine which tags
are applied to a system.

byte Used for memory storage units such as EPOComputerProperties
.TotalPhysicalMemory and EPOComputerProperties.FreeMemory.

eventID Used for identifying events such as Threat Events.

group Used for groups in the System Tree. For example Groups.L1ParentID.

multiselect_group Used for selecting multiple System Tree groups.

managedState A Boolean value used for the managed status of a device in the System
Tree.

Megabytes Used for disk storage units such as EPOComputerProperties
.FreeDiskSpace and EPOComputerProperties.TotalDiskSpace.

optionGroup_enum An enumeration of grouped lists such as policy categories.

Percentagefromstring Used for percentages and compliance columns.

Policycolumn Used for policies.

productVersion Used for version numbers. Behaves normally when using equality
functions, but handles numeric strings with more than one decimal point.

Rsdmac Used for MAC addresses. Most often associated with detected systems.

Rsdoui Used for OUIs associated with detected systems.

string_lookupWithResolver Used to allow the user to choose from a list of known string values.

Threatcategory A grouped enumeration used for listing the available threat categories.

DATversion Used for DAT version information.

engineVersion Used for engine version information.

datVersion Used for DAT version information. Identical to DATversion.

Special ePolicy Orchestrator operators
ePolicy Orchestrator defines a number of operators designed to operate on its own custom datatypes.

Table 3-7 ePolicy Orchestrator special operators

Operator Description Example

hasTag Evaluates to true if the
specified tag is applied to
the system.

(hasTag EPOLeafNode.AppliedTags
'fullTagName')

containsTag Evaluates to true if any
tags applied to the system
contain the specified partial
tag name.

(containsTag EPOLeafNode
.AppliedTags 'partialTagName')

hasTagExcluded Evaluates to true if the
specified tag is excluded on
the system.

(hasTagExcluded EPOLeafNode
.AppliedTags 'excludedTagName')

doesNotHaveTag Evaluates to true if the
specified tag is not applied
to the system.

(doesNotHaveTag EPOLeafNode
.AppliedTags 'fullTagName')

3 Remote queries
Ad-hoc query reference

38 McAfee ePolicy Orchestrator 5.1.0 Software Reference Guide
Web API Scripting

Table 3-7 ePolicy Orchestrator special operators (continued)

Operator Description Example

doesNotHaveAnyTag Evaluates to true if the
system has no tags applied
to it.

(doesNotHaveAnyTag EPOLeafNode
.AppliedTags)

childOf Returns rows that are direct
descendants of the given
nodes.

(childOf EPOLeafNode.parentId
<nodeId1> <nodeId2> ...)

descendsFrom Returns rows that are
descended from the given
nodes.

(descendsFrom EPOLeafNode
.parentId <nodeId1> <nodeId2>
...)

stateEq Evaluates to true if the
managed state of the
system matches either
"managed" or
"unmanaged".

(stateEq EPOLeafNode
.ManagedState
["managed"|"unmanaged"])

version_eq Evaluates to true if the
versions are equal using
dotted version notation.

(version_eq EPOMasterCatalog
.ProductVersion '3.1.4.1')

version_neq Evaluates to true if the
versions are not equal
using dotted version
notation.

(version_neq EPOMasterCatalog
.ProductVersion '3.1.4.1')

version_ge Evaluates to true if the first
version is greater or equal
to the second using dotted
version notation.

(version_ge EPOMasterCatalog
.ProductVersion '3.1.4.1')

version_lt Evaluates to true if the first
version is less than the
second using dotted version
notation.

(version_lt EPOMasterCatalog
.ProductVersion '3.1.4.1')

threatcategory_belongs Returns the row if the
threat category belongs to
the given group.

(threatcategory_belongs
EPOEvents.ThreatCategory 'av')

threatcategory_not_belongs Returns the row if the
threat category does not
belong to the given group.

(threatcategory_not_belongs
EPOEvents.ThreatCategory 'av')

withinRepositoryDatVersion Evaluates to true if the DAT
version is within a supplied
number of versions to what
is in the repository.

(withinRepositoryDatVersion
EPOProdPropsView_VIRUSCAN.datver
3)

not_withinRepositoryDatVersion Evaluates to true if the DAT
version is not within a
supplied number of
versions to what is in the
repository.

(not_withinRepositoryDatVersion
EPOProdPropsView_VIRUSCAN.datver
3)

Special ePolicy Orchestrator operator and datatype
combinations
You can only use the specific combinations of datatypes and operators defined by ePolicy Orchestrator
and shown in this table.

Remote queries
Ad-hoc query reference 3

McAfee ePolicy Orchestrator 5.1.0 Software Reference Guide
Web API Scripting

39

3 Remote queries
Ad-hoc query reference

40 McAfee ePolicy Orchestrator 5.1.0 Software Reference Guide
Web API Scripting

Index

A
about this guide 5
authentication 13

C
commands

clienttask.export 25

clienttask.importClientTask 25

clienttask.run 16

commonevent.purgeEvents 16

core.addPermSetsForUser 16

core.addUser 16

core.executeQuery 16, 27, 30, 32–34

core.exportPermissionSets 16

core.help 9, 14, 16

core.importPermissionSets 16

core.listDatabases 16, 28, 31, 34

core.listDatatypes 28, 34

core.listQueries 16, 27, 34

core.listTables 16, 28, 31, 32, 34

core.listUsers 23

core.purgeAuditLog 16

core.removeUser 23

core.updateUser 16

detectedsystem.add 24

detectedsystem.addToTree 24

dir 14

epogroup.findSystems 25

help 14

mcafee.client 13

policy.assignToGroup 10

policy.assignToSystem 16

policy.export 25

policy.find 10, 16, 25

policy.importPolicy 25

repository.checkInPackage 16

repository.find 16

repository.pull 16

scheduler.cancelServerTask 16

scheduler.listRunningServerTasks 13

scheduler.runServerTask 16

system.applyTag 16, 21

system.delete 16

commands (continued)
system.deployAgent 16

system.find 16, 22

system.findGroups 10, 24, 25

system.importSystem 16

system.report 25

system.setUserProperties 16

system.wakeupAgent 16, 22

tasklog.purge 16

conventions and icons used in this guide 5
cURL

example using 9, 10

syntax 7

D
datatypes

ePolicy Orchestrator-specific 38

ePolicy Orchestrator-specific operator combinations 39

reference 35, 38

S-expression operator combinations 37

discover commands
Python client 14

URLs 9
documentation

audience for this guide 5
product-specific, finding 6
typographical conventions and icons 5

E
examples

assigning policies 10

automating repetitive tasks 22

automating user management 23

importing and exporting 25

importing computers 24

introduction 21

introductory 21

System Tree maintenance 25

URL use 10

McAfee ePolicy Orchestrator 5.1.0 Software Reference Guide
Web API Scripting

41

H
help

retrieving command listings 9

I
introduction

examples 21

K
key commands 16

M
McAfee ServicePortal, accessing 6

O
operators

ePolicy Orchestrator -specific datatype combinations 39

ePolicy Orchestrator specific 38

reference 38

S-expression datatype combinations 37

S-expression reference 35

output type
JSON 7
terse 7
verbose 7
XML 7

P
parameter notes 12

password security 13

Python client
authenticating 13

discovering commands 14

importing into a script 13

script requirements 13

software requirements 12

using 12

Q
queries

ad-hoc 28

ad-hoc example created from query definition 30

ad-hoc reference 34

commands used in remote queries 34

datatype reference 35

example ad-hoc query 28

queries (continued)
executing persistent 27

joining tables 32, 33

joinTable argument 33

obtaining database information 31

obtaining table information 31

operator reference 34

operators used with S-expressions 35

order argument 30

performing ad-hoc 28

persistent 27

select argument 30, 32

specifying tables to join 33

trimming result sets 33

where argument 30

R
requirements

Python client 12

scripts 13

S
S-expression in ad-hoc queries 30

S-expressions
operator reference 35

operators used with datatypes 37

ServicePortal, finding product documentation 6

T
Technical Support, finding product information 6

U
URLs

discovering commands through 9

W
web API

basics 7
calling with URLs 7
controlling output locale 7
introduction 7
output formats 7
overview 7
retrieving files with curl 7
return types 10

wget 7

Index

42 McAfee ePolicy Orchestrator 5.1.0 Software Reference Guide
Web API Scripting

0-00

	Contents
	Preface
	About this guide
	Audience
	Conventions

	Find product documentation

	1 Overview
	Web API basics
	Discover available commands through URLs
	Example task using the web API
	Python client basics
	Web API Python script requirements
	Import the McAfee Python client library
	Script McAfee ePO server authentication

	Discover available commands in Python
	Additional documentation included with the web API
	Key commands

	2 Example Python scripts
	Example 1: Tag systems from a list
	Example 2: Automate repetitive tasks on managed systems
	Example 3: Automate user management
	Example 4: Import computers from external sources
	Example 5: Import and export data
	Example 6: Automate maintenance of the System Tree

	3 Remote queries
	Persistent queries
	Ad-hoc queries
	Create an ad-hoc query from a query definition
	Get information about registered databases and tables

	Queries with joins
	Retrieve hierarchical query results
	Limit query result depth

	Remote query commands
	Ad-hoc query reference
	General query datatypes
	General S-Expression operations
	S-Expression operator and datatype combinations
	Special ePolicy Orchestrator datatypes
	Special ePolicy Orchestrator operators
	Special ePolicy Orchestrator operator and datatype combinations

	Index
	A
	C
	D
	E
	H
	I
	K
	M
	O
	P
	Q
	R
	S
	T
	U
	W

